目前,工业市场呈现出更高电能利用率的趋势,这就要求不断改进对电源系统的监控。对电源的适当管理与分配对工业领域的节能" title="节能">节能与总体电源利用情况非常重要。在制定决策和确保适当保护输电网与最终用户时,准确、实时的测量" title="测量">测量尤为重要。
图1示出了必须测量三相涌流时的典型高压电力传输系统。对所生成的极高电压必须进行隔离和衰减,以便与低电压测量及相应控制系统的输入容量相匹配。通过电源变压器进行第一级高电压隔离。例如,来自发电站的220 kV电压可转换成只有220V的较低电平。由于这一电压对于当前的模数转换器(ADC)还是太大,因此需要进一步进行三相隔离。下一步是将220V的电压转换成可测量的±10V信号,以提供必需的控制与保护电路。负载电流测量也需要相同的隔离、测量、控制与保护;通过高压变压器可以重复上述操作,以降低电压。
尽管输入频率相对较低,但每次测量的时序非常重要,这一配置使我们必须对多个通道同时进行测量。
电压与电流测量较常见的解决方案之一就是使用高压组件。来自变压器或变流器的信号经滤波后可通过运算放大器加以缓冲,变压器与运算放大器之间的必须有一个电阻、电容(RC)滤波器,用以限制电压尖峰与输入电流,图2示出了采用这一配置的典型应用电路。
R1与C1可滤除变压器可能产生的电压尖峰。输入电阻器R1还有助于限制瞬态输入电流并保护运算放大器的高阻抗、非反相输入引脚。经R2与C2再次滤波可将运算放大器与电荷注入器件暂时隔离。电荷注入器件通常与当前的逐次逼近寄存器(SAR)架构ADC关联。通过这种方法,可以对变压器(通常为20 Vpp或±10 Vpp)的输出电压进行缓冲并将其传递给ADC输入端。
不过,这款简单的电路也存在一些缺点。首先必须使用三个电源才能让这个电路正常工作(这也是最大的缺点):运算放大器与ADC的模拟部分分别需要一个±12 V的电源,处理器接口需要一个5 V电源。这三个电源必须专门用于电路的模拟测量部分,不能从用于数字处理或中继驱动器的任何有噪声的辅助电源派生。同时,这些要求使得电路板布局变得极为复杂,并且不可避免地增加了多层印刷电路板(PCB)的设计成本。第二个问题在于有限的组件数量:只有少数几家制造商能够提供具有±10 V输入电压的ADC。
另一个解决方案是利用低压组件进行电源测量。在这一特定的情况下,我们所提及的组件都是使用低成本的5 V单电源进行模拟测量。图3示出了使用这些低成本、低电压组件的建议解决方案。来自隔离变压器的±10 V信号直接传输至差动放大器(例如TI公司的INA159)的输入端。100 kΩ电阻器的高输入阻抗与±30 V的最大输入电压使得这一连接成为可能。另外还可对内部电阻器进行微调,以达到最佳的线性度及共模抑制比(CMRR)。
随后可对输出信号进行电平转换并衰减到0.5 V ~ 4.5 V,然后直接传输到ADC(例如TI公司的ADS8365)。这款全新的16位6通道同步采样的低功耗SAR转换器通过6个ADC提供固有的采样和保持特性,该器件可用于电源测量应用。在该应用中,测量三相电压与三相电流。
第三种可选解决方案是使用ΔΣ ADC来转换输入信号。使用ΔΣ ADC转换器进行测量的主要优势之一是可以使用数字滤波器。数字滤波器不仅能够滤除转换器的量化噪声,而且还能以固有的方式对此类应用中存在的较大噪声定形,并将其排除在信号频带之外。在某些测量中除采用前面提到的6通道外还增加了另外两个通道。在这些情况下,也可以测量零线(neutral line)电压与电流。ΔΣ转换器(例如TI公司的ADS1204)具有四个16位性能独立的ΔΣ调制器。通过使用两个ADS1204转换器,可以同时从8个输入通道获得测量数据。
图4说明了四通道解决方案。INA159可对来自变压器的输入信号进行衰减并调节电平。ADS1204将此信号数字化,并提供位流输出。可编程数字滤波器(本例中为TI公司的AMC1210)可处理该位流并提供16位二进制输出,DSP或微控制器可利用该输出提供测量与控制算法功能。在这一特定的情况下,对于实时工业测量,推荐使用TI公司的TMS320F280x。
总结
当系统电源监视设备的设计存在非常高的电压时,可以使用现有的组件来创建简单、高性能、低成本电压与电流测量解决方案,上述解决方案仅为其中的几种而已。还有两种简单易用的方法:具有附加对被测信号模拟滤波功能的SAR转换器以及具有固有数字滤波器的ΔΣ转换器。这两款解决方案均可提供高性能测量。然而关于采从历史的角度来看,发电站电压和电流测量之间的隔离由变压器提供,并且已被公认为是成本最低的、长期可靠的解决方案。