《电子技术应用》
您所在的位置:首页 > 电源技术 > 设计应用 > 冗余开关电源均流试验分析
冗余开关电源均流试验分析
来源:电子技术应用2012年第2期
贺伟超,孟广国,宋立新,龙 威
北京广利核系统工程有限公司,北京100094
摘要: 随着数字仪控系统在工业行业应用的日益广泛,效率及可靠性更高的开关电源在数字仪控系统设计中的应用也越来越多。针对数字仪控系统工程中开关电源的典型应用配电回路,在电源扩容、电源冗余可靠性设计方面进行分析描述,同时结合试验分析由此设计而产生的电源模块均流问题对配电回路可靠性的影响。
中图分类号: TP303+.3
文献标识码: A
文章编号: 0258-7998(2012)02-0063-03
Analysis of redundancy switching power even current test
He Weichao,Meng Guangguo,Song Lixin,Long Wei
China Techenergy Co.,Ltd,Beijing 100094,China
Abstract: Redundancy technology is a very useful method to improve the reliability of digital control system, which is used in modern industrial production by more and more industrial designers and it plays an increasingly important role. With the device redundancy, software redundancy and redundancy-related technologies, the reliability of the system is strongly improved and the needs of the safe operation of the important load system are met.
Key words : switching power;redundancy;even current;reliability;digital control system

    随着数字仪控系统在工业行业的广泛应用,效率及可靠性更高的开关电源在数字仪控系统设计中的应用也越来越多。采用单台电源供电,电源模块势必在处理巨大功率的同时,因电应力较大,而给功率器件的选择、开关频率和功率密度的提高带来困难。一旦单台电源发生故障,则导致整个系统崩溃,所以,对于使用多个小容量开关电源进行扩容及冗余技术的研究尤为重要。小容量多电源并联冗余的设计有效地解决了大容量单台电源集中使用缺少冗余保护机制的问题,随着大功率输出和分布式电源的出现,使电源模块并联技术得以迅速发展。模块输出间的直接并联运行必须考虑由于各个模块输出特性不一致而造成每个模块输出不均流的问题,以确保各个电源模块分担相等的负载功率[1-2]。

1 电源冗余及扩容技术介绍[3]
    仪控系统的冗余一般都是通过关键设备并联实现的,例如n取p系统中的二取一冗余方法、三取二冗余方法、四取二冗余方法、二取二方法、n+m取n方法等。每种冗余方法的基本机理都是通过设备并联并辅以相应的决策机制来完成冗余设计的,高冗余机制系统在有设备发生故障时,可以降级到低冗余机制运行。例如:当n+m冗余方法中出现p个设备同时故障时,可以降级到n+(m-p)方式运行。

 

 


    在电源配电回路设计中,经常采用多组n+m电源模块组成冗余扩容电路对系统进行供电,例如采用1+1型、3+3型等供电设计,通过使用具有相同参数特性的电源模块并联运行来达到配电回路的高可靠度,这样形成的分布式供电体系相对集中供电具有容量易扩充、使用灵活、便于维护、可配置形成冗余机制等优点。当某一组或几组电源出现故障无法正常工作时,由其他热备电源进行供电。在初始特性相同的电源模块运行一段时间以后,不可避免地会出现输出特性的差异,输出特性的变化将影响扩容冗余电源模块组的稳定运行,逐渐出现不同电源模块承担的负载功率不同的情况,长时间运行会导致各个电源模块所承受的电、热应力不同,使部分电源模块过早的损坏。因此,在电源冗余扩容系统设计中,必须根据所用电源的功率、可靠性以及系统所规定的最短平均无故障时间等参数考虑电源的搭配设计,同时制定相应的运行维护措施,确保电源作为仪控系统的能量来源能够安全、可靠、长期、稳定地运行。
    典型电源组合示意图如图1所示。

示。当单个电源低于其他时源时,试验数据如表2所示。(RL=196 mΩ)。

    从以上两次试验可以看出,在3+3冗余配电体系中,当单个电源电压输出漂移升高时,电源的负载电流输出有较大的上升,相应地电源的发热也会显著地增加,但与此电源并联冗余的电源模块负载输出变化不大,配电系统的总输出上升,对于纯电阻负载来说,负载的发热量有显著的增加。当单个电源电压输出偏移下降时,此电源模块的负载电流输出会有较大的下降,与此电源并联的其他的电源模块负载输出电压略有上升,电流会有缓慢的上升。当电源模块电压下降了DC 1 050 mV时,此电源模块的输出已经非常小,远低于初始运行的参数值,电源组总的负载功率会有下降。两次试验的结果证明了3+3体系组成的开关电源组本身对其中单个电源出现偏差的自恢复能力不强,一旦出现上升较多的情况会造成此电源模块的功率会急剧上升,伴随发热量也相应增大,当出现下降较多的情况时,会造成此电源模块的实际出力接近于0,电源组的负载基本上由其他电源一起承担,造成了其他电源模块负担的加重。这两种情况都是并联冗余扩容配电体系设计中不期望看到的。所以,必须采取相应的均流措施才能避免此情况发生,提高系统的可靠性。
5 解决方案
    (1)从电源体系上解决,增加电流、电压监视器件,根据配电方案,试验出相应的上下限阈值,加入到仪控系统中去,使模块品质下降的趋势得到预知,再通过维护检修手段提高系统的可靠性。
    (2)从器件选型上提高电源模块的品质,选择支持较强输出偏差补偿能力的开关电源模块。从产品上扩大上下限的阈值范围,从而提高系统的可靠性。
    (3)从工程设计上增加设计裕度,通过降额实现在个别模块出现极端情况下,品质下降模块的运行参数还保持在额定参数范围之内。
    冗余设计策略作为一种被动的可靠性保障技术已经广泛地应用于实际生产生活中,包括本文所描述的并联冗余扩容配电体系,从文中所述系统失效率分析可以看出,n+m系统本身从理论上具有很高的可靠性,3+3冗余系统的理论可用率可以达到11个9的级别,但通过配电回路及试验分析可以得出,电源系统实际的可靠性还和许多其他的因素有关,其中一个重要因素就是并联电源的均流问题。通过对冗余电源电路的配电回路分析,并辅以试验验证,明确了并联冗余扩容配电体系中均流问题的本质,为在仪控系统中电源的实际工程应用提供了理论指导,从而提高了仪控系统的可靠性。
参考文献
[1] 威廉·戈布尔.控制系统的安全评估与可靠性[M].北京:电力出版社,2008.
[2] 贺伟超,马吉强,龙威.数字化仪控系统冗余设计分析[J].自动化博览,2011(6):80-87.
[3] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会.GB/T13626-2008单一故障准则应用于核电厂安全系统[S].2008:5.
 

此内容为AET网站原创,未经授权禁止转载。