《电子技术应用》
您所在的位置:首页 > 模拟设计 > 设计应用 > 去耦电容特性阻抗反谐振点的分析与应用
去耦电容特性阻抗反谐振点的分析与应用
来源:电子技术应用2013年第9期
马秀荣1,2,孔德升1,2,吴 健1,2
1.天津理工大学 计算机与通信工程学院,通信器件教育部与工程研究中心,天津300384; 2.天津理工大学 薄膜电子与通信器件天津重点实验室,天津300384
摘要: 电源分配网络(PDN)的阻抗在指定频段内要求足够低。两个不同容值的并联去耦电容可以降低PDN的阻抗,但是其等效特性阻抗所产生的反谐振点也会引入到PDN阻抗中,该点可能会超过目标阻抗,所以需要合理地选取去耦电容器,尽可能降低该点阻抗。从并联电容的等效电路模型出发,推导并验证了电容参数与反谐振点频率、反谐振点阻抗的数学模型;随后通过实例将该模型应用于基于目标阻抗的设计方法中,证明了该模型实施的直观性和有效性。
中图分类号: TN41
文献标识码: A
文章编号: 0258-7998(2013)09-0061-02
Analysis and application of resonance peak on parallel capacitors characteristic impedance
Ma Xiurong1,2,Kong Desheng1,2,Wu Jian1,2
1.Engineering Research Center of Communication Devices Ministry of Education,School of Computer and Communication Engineering,Tianjin University of Technology,Tianjin 300384,China; 2.Tianjin Key Laboratory of Film Electronic and Communication Devices, Tianjin University of Technology,Tianjin 300384,China
Abstract: The impedance of power distribution work need low enough over a specified band. Two bypass capacitors with different values may create resonance peak, unless the capacitor parameters are selected properly. The mathematical model of capacitor parameters with resonance peak’s frequence and impedance is derivated and verified from the equivalent circuit model of parallel capacitors in this paper. This mathematical model is applied in the design method of target impedance-based by example, which proves the implementation of this model is intutive and effective.
Key words : PCB;PDN;decoupling capacitor;characteristic impedance;resonance peak

    随着印制电路板(PCB)集成度的提高,寄生参数会破坏PCB电源分配网络(PDN)的稳定性[1],PDN的阻抗ZPDN会产生尖峰(反谐振点),参考文献[2]通过去耦电容削弱ZPDN的尖峰并将其推移至PCB的非工作频段,指出了并联去耦电容的等效特性阻抗会产生反谐振点,且该点不可以大于目标阻抗。参考文献[3]总结了各种电容器随着频率升高,其特性阻抗、有效容值受寄生电阻的影响;参考文献[4]是从场角度研究电容特性阻抗与寄生参数的关系,参考文献[5]采用运算放大器来增加电容的有效容值。以上文献都均未给出寄生参数和去耦电容特性阻抗反谐振点关系的完整模型。

    参考文献[6]详细描述了单个电容寄生参数与特性阻抗之间的关系;参考文献[7-8]从等效电路角度计算出了ZPDN尖峰的频率位置;参考文献[9]将PDN等效为微波网络计算出了ZPDN尖峰的频率位置;上述文献中,仅给出了寄生参数变化对反谐振点的影响的仿真图形,并没有给出相应数学模型。
    本文主要在参考文献[6,8]的基础上,推导并验证了并联电容特性阻抗反谐振点与电容寄生参数的数学模型,即合理选取最佳去耦电容来尽可能压低反谐振点的阻抗,然后在Cadence开发环境中实施了该方法,从而在选取去耦电容器这一环节上给出了重要的理论参考。
1 电容特性阻抗分析
    图1为并联电容的等效电路模型[7],阻抗为:
   

 


    本文从并联电容的等效电路模型出发,推导出电容参数与反谐振点频率、反谐振点幅度的数学模型,然后将此模型应用到基于目标阻抗的设计中。通过简单计算,验证了电容组选取的合理性。此方法简单直观,为高速电路设计人员在选择去耦电容时提供了有价值的参考。
参考文献
[1] POPOVICH M,FRIEDMAN E G,SOTMAN M,et al.On chip power distribution grids with multiple supply voltages for high-performance integrated circuits[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2008,7(16):908-921.
[2] SMITH L D,ANDERSON R E,FOREHAND D W,et al.  Power distribution system design methodology and capacitor  selection for modern CMOS technology[J].IEEE Transactions  on Adcanced Packaging,1999,3(22):284-291.
[3] CHARANIA T,OPAL A,SACHDEV M.Analysis and design  of on-chip decoupling capacitors[J].IEEE Transactions on  Very Large Scale Integration(VLSI) Systems,2012:1-11.
[4] JIAO D,KIM J H,He Jianqi.Efficient full-wave characterization of discrete high-density multiterminal decoupling  capacitors for high-speed digital systems[J].IEEE Transactions on Adcanced Packaging,2008,31(1):154-162.
[5] Gu Jie,HARJANI R,KIM C H.Design and implementation  of active decoupling capacitor circuits for power supply  regulation in digital ICS[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2009,17(2):292-301.
[6] NOVAK I,NOUJEIM L M,CYR V S,et al.Distributed matched bypassing for board-level power distribution
     networks[J].IEEE Transactions on Adcanced Packaging,2002,2(25):230-243.
[7] POPOVICH M,FRIEDMAN E G.Decoupling capacitors for multi-voltage power distribution systems[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2006,14(3):217-228.
[8] KIM J,SHRIGARPURE K,Fan Jun,et al.Equivalent  circuit model for power bus design in multi-layer PCBs with via arrays[J].IEEE Microwave and Wireless Components Letters,2011,21(2):62-64.
[9] Zhang Yaojiang,OO Z Z,Wei Xingchang,et al.Systematic microwave network analysis for multilayer printed circuit boards  with vias and decoupling capacitors[J].IEEE Transactions on Electromagnetic Compatibility,2010,52(2):401-409.

此内容为AET网站原创,未经授权禁止转载。