《电子技术应用》
您所在的位置:首页 > 模拟设计 > 设计应用 > 理解精密比较器特殊的工作特性
理解精密比较器特殊的工作特性
摘要: 本文讨论了将普通比较器应用于精密电压检测时遇到的问题,并介绍了一款新的能够克服这些问题的精密比较器。
Abstract:
Key words :

  比较器是一种得到广泛使用的电路元件。在许多情况下,如方脉冲整形电路中,电压比较的精度不是很关键,电压值可以在几百毫伏范围内变化而不影响电路性能。然而,也有许多应用要求非常精确的比较电压,而且这些电压要求具有很小的漂移,不会与迟滞电路发生交互影响。本文讨论了将普通比较器应用于精密电压检测时遇到的问题,并介绍了一款新的能够克服这些问题的精密比较器。

  普通比较器

  比较器是一种高增益放大器,可以放大输入端很小的差分信号,并驱动输出端切换到两个输出状态中的一个。图1是基本的比较器电路,可以用在反相或同相配置中。输入信号与门限电压VTH进行比较,输出端根据输入信号是小于还是大于VTH而改变其状态。

  图1B和1D给出了比较器电路的转换函数。同相比较器被定义为在输入信号大于门限电压时输出为正的比较器,而反相比较器被定义为输入信号大于门限电压时输出为负的比较器。

同相与反相比较器的转换函数  

图1:同相与反相比较器的转换函数。

  比较器的增益决定了将输出驱动到高或低输出状态所要求的差分输入电压。例如,如果比较器的增益为80dB,即10,000倍,并且供电电压为5V,那么把输出驱动为高或低状态所需的输入差分电压只需0.5mV。这种情况下,很容易因为信号上或比较电压VTH上的噪声而在比较器输出端产生多次状态变化的问题。

  图2中的示波器图形,显示了一个有较小噪声的输入信号、以及它对图1C所示的反相比较器输出状态的影响。在图2中,绿色线条代表的是输入信号VS,蓝色线条代表的是门限电压VTH,而黄色线条代表的是比较器的输出VO。

  图2所示的比较器输出信号下降沿的波动可以利用正反馈消除,因为正反馈可以用来增加比较器的滞后效应。图3给出了图1所示比较器的应用原理图,其中反馈电阻Rf和Ri增加的正反馈和滞后功能也显示于转换函数的图形中。

没有滞后的比较器信号

  图2:没有滞后的比较器信号。

带滞后效应的同相与反相比较器的转移函数

  图3:带滞后效应的同相与反相比较器的转移函数。

  正反馈增强了信号电压与转变点参考电压VTH之间的差异,并产生两个门限值:一个用于正方向变化的输入信号,一个用于负方向变化的信号。它们在图3中分别被标记为LSTV(下位状态转换电压)和USTV(上位状态转换电压)。滞后功能将抑制小于滞环宽度的噪声幅度,并阻止出现多次输出状态转变。

  讨论具有滞后功能的比较器需要引入一个新的术语:状态转换电压,它被定义为导致比较器输出状态发生切换时的实际信号电压值。状态转换电压有两个独特的值,具体取决于比较器输出电压;VTH是门限电压(或阀值电压),也是理想的比较电压。

  STV即状态转换电压的缩写,它是输出状态改变时的信号电压。STV有两个值:

  ·USTV,即上位状态转换电压的缩写,是比门限电压更大的STV。

  ·LSTV,即下位状态转换电压的缩写,是比门限电压更小的STV。

  图4中的示波器图形是图3中的反相比较器增加了滞后功能后的效果。其中绿色线条代表的是输入信号VS,黄色线条是输出信号VO,而蓝色线条是比较器+IN引脚上的电压。该图显示了增加滞后功能后门限电压的阶跃函数,从而产生了USTV和LSTV。

带滞后效应的反相比较器

  图4:带滞后效应的反相比较器。

  在该图中,输入信号已经被稍稍向上偏移了一些,以便展示滞后步骤的细节。

  虽然滞后可以消除状态转换期间的输出波动,但状态转换电压的实际值的精度将有所下降。没有滞后效应时,VTH、USTV和LSTV的值是相等的。

  有了滞后功能后,USTV和LSTV将受到反馈电阻精度、比较器输出饱和电压、VTH值以及任何与信号源或门限电压源有关的源阻抗的影响。

  参考图3A,该图显示的是不带滞后功能的同相比较器,+IN引脚上的电压等于等式1:

等式1

  等式1忽略了输入偏置电压和输入偏置电流的影响。输出电压VO有两个值,一个是VOL,即输出低饱和电压,一个是VOH,即输出高饱和电压,因此+IN电压有两种计算结果。输出饱和电压值在大多数数据手册中都有规定。状态转换电压是输入信号VS在+IN=VTH时的值。

  等式2给出了同相下位状态转换电压:

等式2

  等式3给出了同相上位状态转换电压:

等式3

  图3C是带滞后功能的反相比较器,+IN引脚上的电压等于等式4:

等式4

  等式4也忽略了输入偏置电压和输入偏置电流的影响。

  等式5给出了反相下位状态转换电压:

等式5

  等式6给出了同相上位状态转换电压:

等式6

  拿同相比较器为例,等式2和3可以用来计算一系列曲线以表明这种滞后效应对实际状态转换电压的影响,以及围绕VTH的滞后电压位置。

  图5是VTH在0到5V范围内变化时得到的状态转换电压图。该图叠加了两个节点。

同相比较器状态转换电压

  图5:同相比较器状态转换电压。

 

  标记为+IN=VTH的黄线是+IN=VTH时的图形,它代表了比较器输入端的电压,是比较器输出端改变状态时的点组成的曲线。

  标记为USTV的绿线以及标记为LSTV的蓝线分别是上位和下位状态转换电压的图形。

  这些值是在+IN等于VTH、Rf=100kW、Ri=20kW、VOL=0.0V和VOH=5.0V时用等式2和3算出来的。这里选用了正反馈的较大值以便清晰地表明结果。在电路工作期间,当VS信号高于上位状态转换电压时,比较器的输出将切换到高输出状态;当VS低于下位状态转换电压时比较器的输出则切换到低输出状态。

  这带来的主要影响是当门限电压值变化时滞后效应不对称。滞后曲线的位置不是以门限电压为中心(只有一个点例外)并且取决于VTH。

  对有些比较器应用而言,状态转换电压的精度不是关键,但还是有许多应用可以从精确、容易受控的状态转换电压受益。

  “剂量调节”就是这类应用之一,其中的“剂量(Dose)”是速率的积分。例如,如果一个管道中的液体流速为每分钟1加仑,那么剂量或一定时间间隔内液体的总量就是总液体数量或这段时间内流动速率的积分。

  作为本例的一个具体应用是医疗X射线放射量测定,它用于控制X射线胶片的曝光。在X射线诊断过程中,对X射线胶片进行精确地曝光控制有助于减少病人接受的X射线。

  针对这个应用的电路如图6所示。

具有可编程曝光功能的X射线放射量测定器

  图6:具有可编程曝光功能的X射线放射量测定器。

  该电路由两个功能组成:一个是电离室,它能检测X射线,并产生正比于X射线强度的电流IIC;另一个是由放大器A1和电阻RF组成的跨阻放大器(TIA),用来将电离室电流转换成电压: Dose = IIC x RF

等式7

  放大器A1是针对非常低输入偏置电流(典型3fA)设计的LMP7721,它非常适合放大源阻抗较高的信号,如电离室。放大器A2是一个用来测定剂量的积分器,它是剂量速率的积分:

等式8

  当引脚1的积分器输出与引脚2的门限电压相等时,比较器LMP7300会指示所需剂量已达到。

  在这类应用中,所需剂量取决于多种因素,如被照射X射线的物体密度。

  图6中的12位DAC用来设置比较器的门限电压。LMP7300具有一个精确稳定的2.048V参考电压,这个参考电压被放大器A3放大到4.096V,并成为DAC的电压参考,而DAC则向LMP7300比较器提供可编程门限电压。

  该应用的另一个特点是使用LM2787和LM285-2.5为放大器A1和A2产生-0.25V的供电电压。这个很小的负电压可以使放大器输出摆幅为0V,并根据速率和剂量信号改变放大器A1和A2的输出饱和电压到0V左右。

  用于这类应用的比较器需要具有一个精确门限电压,该门限电压要能在一定范围内是可编程的,以便优化胶片曝光。门限电压应独立于滞后电压值、门限电压值、比较器的输出饱和电压和反馈电阻容差。像LMP7300这样的精密比较器就可以提供这些性能。具有独立比较器功能和滞后控制功能的LMP7300如图6所示。

  另外,控制USTV的正向滞后和控制LSTV的反向滞后电路都具有独立的控制输入。这个重要特点如图7所示,该图给出了输入信号和滞后控制组合下的比较器转换函数。这个比较器有效地将代表了理想比较电压的门限电压与USTV和LSTV分开来,从而在提供精确信号比较的同时仍能提供滞后功能。

LMP7300独立的滞后控制功能

  图7:LMP7300独立的滞后控制功能。

  LMP7300的滞后值受控于VREF电压和施加于HYSTP和HYSTN引脚电压之间的电压差。图7A和7D显示了两种可能的滞后连接。如果一个滞后引脚被直接连接到VREF电压,那部分滞环就会被删除。参考图6,滞后电压值约为20mV:

等式9

  由于滞后电压独立于VTH电压,因此R5和R6不要求是精密电阻。无需改变VTH值,滞环宽度要多宽就可以多宽。

  本文重点介绍了精密比较器(比如LMP7300)如何能利用外部反馈电阻产生滞后效应,来克服现有比较器中常见的门限和滞后交互问题。

此内容为AET网站原创,未经授权禁止转载。