文献标识码: A
DOI:10.16157/j.issn.0258-7998.2017.06.021
中文引用格式: 方树,韩杨,罗飞,等. 基于自适应线性神经元网络的谐波检测算法[J].电子技术应用,2017,43(6):83-86.
英文引用格式: Fang Shu,Han Yang,Luo Fei,et al. A novel harmonic estimation algorithm based on adaptive linear neural network[J].Application of Electronic Technique,2017,43(6):83-86.
0 引言
目前,谐波电流检测主要采用频域法和时域检测法。文献[1]提出基于快速傅里叶变换(FFT)的频域谐波检测方法,但容易出现频谱泄漏等诸多问题。文献[2]提出自适应谐波检测方法,该方法根据自适应干扰对消的原理,具有较高的检测精度,但是动态响应较慢。文献[3-5]提出采用人工神经网络的谐波检测算法,但该方法计算量大、实时性差。文献[6]提出基于神经网络的谐波辨识方法,描述了该方法的实现过程,但计算量很大。文献[7]采用神经网络控制器实现对谐波电压的抑制。文献[8]比较了时域与频域神经网络方法在有源滤波器中的应用。文献[9]采用神经网络实现谐波检测,并采用滑模变结构控制实现对谐波的补偿。文献[10]采用神经网络从负荷电流中提取3、5次谐波分量,该方法采用10个隐含层神经元,网络规模小,有较高的稳态精度。文献[11]提出提升小波变换和变步长LMS相结合的自适应谐波检测算法,对谐波电流进行正交变换,有效减少输入数据的互相关性,加快LMS的收敛速度,稳态误差较小。
1 基于自适应线性神经元网络的谐波检测算法模型
自适应线性神经元网络(Adaptive Linear Neural Network,ADALINE)算法是一种采用最小二乘(LMS)寻找最优解的优化数学方法,其原理图如1所示。
根据ADALINE的定义,任意信号Y(t)可表示为:
其中矩阵R为实对称阵。从式(6)看出,均方误差ε是关于权系数向量的二次函数,对ε求偏导得:
式(10)称为Weiner解,对应于权向量空间最优解的点,该点的目标函数取得最小值εmin。采用这种方法计算最优权向量涉及到对矩阵求逆,当输入信号是谐波含量高的随机信号流时,难以实时计算准确的R-1。因此,可对第k步平方误差εk直接求偏导得:
2 步长因子对谐波检测算法的影响
权系数向量的维数与估计的谐波次数有关。当估计的谐波次数远小于实际负载的谐波电流次数时,必然会引起较大的计算误差,反之又会引起计算量的增加。因此需要在两者之间进行折衷,同时权系数的精度也受到学习因子的影响,以下通过仿真进行分析。
不失一般性,设被检测的信号为:
图2为在不同基波步长因子μ1情况下,信号的基波幅值由500突变为1 000时,基波参数a1sin(ω0t)、b1cos(ω0t)和检测误差ierr的三维流形图,其中谐波步长因子μi=0.003 9(i=3,5,7,9)。图2表明,当μ1=0.001 2时,三维流形的轨迹从ierr=0平面以500为半径的圆,基波幅值突增后,经过一系列的振荡,收敛到ierr=0平面以1 000为半径的圆;当μ1=0.012,信号突变后ierr经过短暂的过渡过程收敛到ierr=0平面;当μ1=0.12时,三维流形轨迹从初态到终态都严重地畸变。
仿真结果表明,μ1过小,尽管检测精度很高,但动态过程收敛缓慢;μ1过大,又会引起检测值畸变严重,导致整个检测过程发散,系统失稳。因此μ1需要在检测精度和动态响应速度两方面作折衷选择,其取值范围可以从三维流形的几何形状直观地看出。
3 基于CCS的算例分析
为了验证上述谐波检测算法的可行性,将该算法在浮点型DSP TMS320C6726硬件平台中通过编程实现。下面通过两个算例加以说明。图3、图4中横坐标表示采样点数,采样频率为10 kHz,纵坐标单位为A。
第一组算例中Y(t)=500sin(ω0t)+200sin(3ω0t)。图3分别给出了不同3次谐波步长因子μ3下的采样电流和通过该检测算法重构的3次谐波波形,其中μ3分别为0.000 4和0.003 9,基波因子μ1均为0.012。当μ3=0.000 4时,估计的3次谐波幅值为134 A,即3次谐波的估计误差达到33%,如图3(a)所示;当μ3=0.003 9时,3次谐波幅值为208 A,误差减小至4%,如图3(b)所示。
第二组算例中Y(t)=500sin(ω0t)+200sin(3ω0t)+200sin(5ω0t)+sin(7ω0t)+sin(9ω0t),其中μ1=0.012、μi=0.003 9(i=3,5,7,9)。图4(a)为负载电流和APAF算法的估计误差波形图,其中估计误差在±6A之间波动,即估计误差在1%左右,确保了整个算法的收敛性;图4(b)为通过APAF算法重构的基波有功和基波无功电流分量,其中有功电流的估计误差为8 A(即1.6%),而无功分量的估计误差为1.44 A(即0.28%);图4(c)为APAF算法重构的3次、5次谐波分量结果,估计误差与图3非常类似,也就是说,步长因子在很大范围内是适用的,并不会随着负载电流谐波次数增加而改变。
算例分析结果表明,要实现快速准确地提取各次谐波分量,必须在考虑检测精度和动态响应速度两方面的前提下,合理地选择步长因子。
4 结论
基于自适应线性神经元网络ADALINE的谐波检测算法,能准确地提取基波有功、无功和各次谐波分量,克服了基于傅里叶变换(FFT)谐波检测算法运算量大、实时性不强、易受噪声影响的缺点,也避免了基于瞬时无功理论(IRPT)谐波检测算法易受电压畸变影响的不足,为实现APF可选择性谐波补偿奠定了基础。
参考文献
[1] 潘文,钱愈涛,周鹦.基于加窗插值FFT的电力谐波测量理论窗函数研究[J].电工技术学报,1994,9(1):50-54.
[2] BARROS J,PEREZ E.An adaptive method for determining the reference compensating current in single-phase shunt active power filters[J].IEEE Transactions on Power Delivery,2003,18(4):1578-1580.
[3] HAN B M,BAE B Y,OVASKA S J.Reference signal generator for active power filters using improved adaptive predictive filter[J].IEEE Transactions on Industrial Electronics,2005,52(2):576-584.
[4] RUKONUZZAMAN M,UEMATSU T,NISHIDA K,et al.Harmonic and reactive currents estimation with adaptive neural network and their compensation with DSP control in single-phase shunt active power filter[C].Telecommunications Energy Conference,2003:358-365.
[5] RUKONUZZAMAN M,NAKAOKA M.Adaptive neural network based harmonic current compensation in active power filter[C].International Joint Conference on Neural Networks,2001,3:2281-2286.
[6] OSOWSKI S.Neural network for estimation of harmonic components in a power system[J].IEE Proc.C,Gener.Transm.Distrib.,1992,139(2):129-135.
[7] KUMAMOTO A,HIKIHARA T,HIRANE Y,et al.Suppression of harmonic voltage distortion by neural network controller[C].Proc.IEEE Ind.Appl.Annual Meeting,Houston,Texas,USA,1992:754-761.
[8] ROUND S,MOHAN N.Comparison of frequency and time domain neural network controllers for an active power filter[C].Proc.IEEE IECON,Maui,Hawaii,USA,1993:1099-1104.
[9] KANDIL M,ABDELKADER S,ELMITWALLY A,et al.A novel three-phase active filter based on neural networks and sliding mode control[C].Proc.IEEE Industrial Elec.Conf.(IECON),San Jose,California,USA,1999:867-872.
[10] PECHARANIN N,MITSUI H.Harmonic detection using neural network[C].Proc.IEEE Intl.Conf.On Neural Networks,Perth,Australia,1995:923-926.
[11] 高红霞,刘晓乐.电力谐波检测改进算法在DSP上的应用与实现[J].电子技术应用,2015,41(4):125-128.
作者信息:
方 树1,韩 杨2,罗 飞3,徐 琳4
(1.国网四川省电力公司,四川 成都610041;2.电子科技大学,四川 成都611731;
3.国网凉山供电公司,四川 西昌615050;4.国网四川省电力公司电力科学研究院,四川 成都610072)