《电子技术应用》
您所在的位置:首页 > 其他 > 业界动态 > 说了这么久自动驾驶,你知道里面涉及哪些软硬件吗

说了这么久自动驾驶,你知道里面涉及哪些软硬件吗

2018-01-23
关键词: 自动驾驶 软硬件

  自动驾驶汽车又称无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,是一种通过电脑系统实现无人驾驶的智能汽车。

  那么,自动驾驶所涉及的软硬件有哪些呢?

  传感器

  传感器相当于自动驾驶汽车的眼睛。通过传感器,自动驾驶汽车能够识别道路、其他车辆、行人障碍物和基础交通设施。按照自动驾驶不同技术路线,传感器可分为激光雷达、传统雷达和摄像头三种。

  1.激光雷达

  目前是被采用比例最大的设备,Google、百度、Uber等公司的自动驾驶技术目前都依赖于它,这种设备被架在汽车的车顶上,能够用激光脉冲对周围环境进行距离检测,并结合软件绘制3D图,从而为自动驾驶汽车提供足够多的环境信息。激光雷达具有准确快速的识别能力,唯一缺点在于造价高昂(平均价格在8万美元一台)导致量产汽车中难以使用该技术。

  2.传统雷达和摄像头

  由于激光雷达的高昂价格,走实用性技术路线的车企纷纷转向传统雷达和摄像头作为传感器替代方案,例如著名电动汽车生产企业特斯拉,采用的方案就是雷达和单目摄像头,国际知名厂商为Mobileye等。其硬件原理与目前车载的ACC自适应巡航系统类似,依靠覆盖汽车周围360°视角的摄像头及前置雷达来识别三维空间信息,从而确保交通工具之间不会互相碰撞。

  虽然这种传感器方案成本较低、易于量产,但对于摄像头的识别能力具有很高要求:单目摄像头需要建立并不断维护庞大的样本特征数据库,如果缺乏待识别目标的特征数据,就会导致系统无法识别以及测距,很容易导致事故的发生。而双目摄像头可直接对前方景物进行测距,但难点在于计算量大,需要提高计算单元性能。

  高精度地图

  自动驾驶技术对于车道、车距、路障等信息的依赖程度更高,需要更加精确的位置信息,是自动驾驶车辆对环境理解的基础,随着自动驾驶技术不断进化升级,为了实现决策的安全性,需要达到厘米级的精确程度。如果说传感器向自动驾驶车辆提供了直观的环境印象,那么高精度地图则可以通过车辆准确定位,将车辆准确地还原在动态变化的立体交通环境中。

  V2X

  V2X,指的是车辆与周围的移动交通控制系统实现交互的技术,X可以是车辆,可以是红绿灯等交通设施,也可以是云端数据库,最终目的都是为了帮助自动驾驶车辆掌握实时驾驶信息和路况信息,结合车辆工程算法做出决策,是自动驾驶车辆迈向无人驾驶阶段的关键。

  AI算法

  算法是支撑自动驾驶技术最关键的部分,目前主流自动驾驶公司都采用了机器学习与人工智能算法来实现。海量的数据是机器学习以及人工智能算法的基础,通过此前提到的传感器、V2X设施和高精度地图信息所获得的数据,以及收集到的驾驶行为、驾驶经验、驾驶规则、案例和周边环境的数据信息,不断优化的算法能够识别并最终规划路线、操纵驾驶。


本站内容除特别声明的原创文章之外,转载内容只为传递更多信息,并不代表本网站赞同其观点。转载的所有的文章、图片、音/视频文件等资料的版权归版权所有权人所有。本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如涉及作品内容、版权和其它问题,请及时通过电子邮件或电话通知我们,以便迅速采取适当措施,避免给双方造成不必要的经济损失。联系电话:010-82306118;邮箱:aet@chinaaet.com。