《电子技术应用》
您所在的位置:首页 > 通信与网络 > 设计应用 > 基于CNN-LSTM神经网络的声纹识别系统设计
基于CNN-LSTM神经网络的声纹识别系统设计
2021年电子技术应用第3期
牟俊杰,姚 刚,孙 涛
海军航空大学 岸防兵学院,山东 烟台264001
摘要: 为实现对心血管疾病的预警,及早发现以心率、心肺音恶性变化为代表的危险前兆,设计基于CNN-LSTM神经网络的声纹识别系统。利用物联网技术融合心率传感芯片、单片机、电子听诊器等设备,对心率进行实时监测、辅助预警;根据梅尔道普频率系数对心肺音信号进行特征提取,构建基于CNN-LSTM算法的心肺音智能识别模型,对部分心肺音进行智能检测诊断,实验结果显示损失值为0.082,准确率达0.908。开拓了人工智能技术在心血管疾病预警方面的应用空间,前瞻性强、结构框架完整,可有效避免医疗资源浪费,前置对心血管疾病的应对措施,市场应用前景广阔,对于推动智慧医疗有重大作用。
中图分类号: TP399
文献标识码: A
DOI:10.16157/j.issn.0258-7998.200960
中文引用格式: 牟俊杰,姚刚,孙涛. 基于CNN-LSTM神经网络的声纹识别系统设计[J].电子技术应用,2021,47(3):75-78.
英文引用格式: Mu Junjie,Yao Gang,Sun Tao. Design of vocieprint recognition system based on CNN-LSTM neural network[J]. Application of Electronic Technique,2021,47(3):75-78.
Design of vocieprint recognition system based on CNN-LSTM neural network
Mu Junjie,Yao Gang,Sun Tao
Coastal Defense College,Naval Aviation University,Yantai 264001,China
Abstract: For warning of cardiovascular disease,in order to early detect the change of heart and lung voice representing the signs of danger,the vocieprint recognition system based on CNN-LSTM is designed. Using the Internet of Things technology coalescing the heart rate sensor chip, single-chip computer, electronic stethoscope, such as equipments,it can monitor the heart rate in real-time, early warn.And the cardiopulmonary sound recognition model based on the CNN-LSTM algorithm is trained, results show that the loss value is 0.082, accuracy rate of 0.908. The system is forward-looking and has a complete structural framework, which can effectively avoid the waste of medical resources, preposite the countermeasures for cardiovascular diseases.It has a broad application prospect in the market, and plays a significant role in promoting smart medical treatment.
Key words : CNN;LSTM;features extraction;MFCC;cardiovascular disease;vocieprint recognition

0 引言

    随着人工智能的突破性进展和“互联网+”技术的普及,智慧医疗成为医疗技术发展的新引擎,诞生了一系列智能医疗服务产品,如智能药盒、智能手环等[1]。但人工智能过高的成本导致寻找合适的切入方式显得尤为关键[2]

    在人口老龄化日益严重的当下,心血管疾病不断威胁老年人健康,引发社会广泛关注。由于医疗知识欠缺、行动不便等原因,部分老年人就医不及时,错过了抢救的黄金时间,留下永远的遗憾。开发心血管疾病方面的智能预警系统,满足庞大的老年人群体需求迫在眉睫[3]。在医疗实践中,对心血管疾病的诊断常常以心率、心肺音数据为重要支撑,国内外以DSP[4]、长短时记忆(Long Short Time Memory,LSTM)[5]、卷积神经网络[6](Convolutional Neural Network,CNN)等方法算法为手段对心血管疾病的信号诊断进行了相当多的分析,但基本均停留在理论层面,距离软硬件结合的实际应用尚有差距。各种医疗设备的聚焦点主要是信号的准确采集、分离[7-8],基于医疗伦理等原因,对智能诊断设备的研制尚处于知识储备期,有巨大的空白亟需填补。本文设计了基于CNN-LSTM的心血管疾病预警系统,利用物联网技术采集心率和心肺音等健康指标数据,对老人的健康状况进行实时监测、预警,采用基于CNN-LSTM模型的智能算法对心肺音信号进行智能分析预警。系统着重考虑了适用性、稳定性和成本,具有较高的实用价值和完整的结构框架,是利用智慧医疗从应用层面解决心血管疾病问题的一次重要探索。




本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003439




作者信息:

牟俊杰,姚  刚,孙  涛

(海军航空大学 岸防兵学院,山东 烟台264001)

此内容为AET网站原创,未经授权禁止转载。