《电子技术应用》
您所在的位置:首页 > 测试测量 > 设计应用 > Faster RCNN和LGDF结合的肝包虫病CT图像病灶分割
Faster RCNN和LGDF结合的肝包虫病CT图像病灶分割
2021年电子技术应用第7期
刘志华1,王正业1,李丰军2,严传波2
1.新疆医科大学 公共卫生学院,新疆 乌鲁木齐830011;2.新疆医科大学 医学工程技术学院,新疆 乌鲁木齐830011
摘要: 针对人工阅片工作量大、阅片质量不佳且容易出现漏检、错判等问题,将Faster RCNN目标检测模型应用于肝包虫病CT图像的检测,并对目标检测模型进行改进:基于图片分辨率低、病灶大小不同的特点,使用网络深度更深的残差网络(ResNet101)代替原来的VGG16网络,用以提取更丰富的图像特征;根据目标检测模型得出的病灶坐标信息引入LGDF模型进一步对病灶进行分割,从而辅助医生更高效的诊断疾病。实验结果表明,基于ResNet101特征提取网络的目标检测模型能够有效提取目标的特征,检测准确率相比原始检测模型提高2.1%,具有较好的检测精度。同时,将病灶坐标信息引入LGDF模型,相比于原始的LGDF模型更好地完成了对肝包虫病病灶的分割,Dice系数提高了5%,尤其对多囊型肝包虫病CT图像的分割效果较好。
中图分类号: TN911.73;TP751.1
文献标识码: A
DOI:10.16157/j.issn.0258-7998.200923
中文引用格式: 刘志华,王正业,李丰军,等. Faster RCNN和LGDF结合的肝包虫病CT图像病灶分割[J].电子技术应用,2021,47(7):33-37,43.
英文引用格式: Liu Zhihua,Wang Zhengye,Li Fengjun,et al. CT image segmentation of liver hydatid disease based on Faster RCNN and LGDF[J]. Application of Electronic Technique,2021,47(7):33-37,43.
CT image segmentation of liver hydatid disease based on Faster RCNN and LGDF
Liu Zhihua1,Wang Zhengye1,Li Fengjun2,Yan Chuanbo2
1.College of Public Health,Xinjiang Medical University,Urumqi 830011,China; 2.College of Medical Engineering Technology,Xinjiang Medical University,Urumqi 830011,China
Abstract: In view of the large workload of manual image reading, poor image reading quality, and prone to missed inspections and wrong judgments,in this paper, the faster RCNN target detection model is applied to the detection of hepatic echinococcosis CT images. And the target detection model is improved: based on the characteristics of low image resolution and different lesion sizes, the residual network with deeper network depth(ResNet101) is used to replace the original VGG16 to extract richer image features; according to the coordinate information of the lesion obtained by the object detection model, the LGDF model is introduced to further segment the lesion to assist doctors in diagnosing the disease more efficiently. The experimental results show that the object detection model based on the ResNet101 feature extraction network can effectively extract the features of the target, and the detection accuracy is 2.1% higher than the original detection model, and it has better detection accuracy. At the same time, the coordinate information of the lesion is introduced into the LGDF model. Compared with the original LGDF model, the segmentation of hepatic hydatid lesions is better completed, the Dice coefficient is increased by 5%, and the segmentation effect is better especially for the multi cystic liver hydatidosis CT image.
Key words : faster RCNN;LGDF;deep learning;object detection;lesion segmentation

0 引言

    肝包虫病(Hepatic Echinococcosis,HE)又称棘球幼病,是一种人畜共患寄生虫病,主要流行于畜牧业发达地区[1-3]。肝包虫病患者在患病初期无特异性的症状及体征,随着包囊的生长,患者出现临床症状,引起自身机体的感染并发生一些并发症,其中部分并发症可能危及患者生命,需要医生的及时诊断和紧急干预[4-5]。医学影像学检查是诊断疾病的一种方式,能够为患者的病情提供有用的信息,对于肝包虫病的影像学诊断是由医生查看拍摄的CT图片诊断患者是否发生疾病。随着影像设备的更新和发展,医院每天产出大量的医学图片,医生阅片时容易发生视觉疲劳现象,往往出现诊断效率低下、漏检、误判等问题。因此,本文基于目标检测方法实现肝包虫病病灶的检测,从而辅助医生智能诊断疾病。




本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003650




作者信息:

刘志华1,王正业1,李丰军2,严传波2

(1.新疆医科大学 公共卫生学院,新疆 乌鲁木齐830011;2.新疆医科大学 医学工程技术学院,新疆 乌鲁木齐830011)




wd.jpg

此内容为AET网站原创,未经授权禁止转载。