《电子技术应用》
您所在的位置:首页 > 其他 > 设计应用 > 基于ResNet50对地震救援中人体姿态估计的研究
基于ResNet50对地震救援中人体姿态估计的研究
信息技术与网络安全 3期
邬春学,贺欣欣
(上海理工大学 光电信息与计算机工程学院,上海200093)
摘要: 调查发现,地震中死亡人数增加的原因主要是错过救援的黄金时间,因此可通过救援无人机自动对受灾人员进行行为识别与状态分析。人体姿态估计是指对图像中人体关节点和肢体进行检测的过程,在人机交互和行为识别应用中起着重要的作用,然而由于背景复杂、肢体被遮挡等因素导致标注人体关节点和肢体十分困难。因此提出一种结合ResNet50及CPM的模型,该模型通过获取图像特征和精调机制,计算出关节点依赖关系,最后划分到对应人体。实验表明,该模型与其他模型对比能够提高复杂场景下人体姿态估计的效果。
中图分类号: TP391
文献标识码: A
DOI: 10.19358/j.issn.2096-5133.2022.03.009
引用格式: 邬春学,贺欣欣. 基于ResNet50对地震救援中人体姿态估计的研究[J].信息技术与网络安全,2022,41(3):50-58,70.
Research on human posture estimation in earthquake rescue based on ResNet50
Wu Chunxue,He Xinxin
(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology, Shanghai 200093,China)
Abstract: It was found that, the main reason for such a high number of deaths lies in the missing of prime rescue time. So rescue UAV can be used to recognize the behaviors of affected population automatically and analyze their status. Human pose estimation refers to the process of detecting humans′ joints and limbs in image, which plays a crucial role in human machine interaction and application of action recognition. However, due to the factors such as complex background and covering of limbs, it is very difficult to note the human joints and limbs in image. To address the issue, this paper proposed a model combining ResNet50 and convolutional pose machine(CPM). According to the model, image features are obtained by residual network and the dependence between joints is obtained by fine adjustment mechanism. Finally the key points aggregated are divided to the corresponding human body. Experiment shows that compared with other human pose estimation models, such model can enhance the effect of human post estimation under complex earthquake rescue scenario.
Key words : neural network;human pose estimation;ResNet50;part affinity fields;earthquake rescue

0 引言

据EM-DAT报道[1]称,2000年至2019年间特大地震自然灾害导致死亡的受灾人数在九种自然灾害死亡人数中居首位,大约占总受灾人数的58%,在地震发生后高效率地救援十分必要。基于成熟的硬件设备[2],救援无人机搜寻伤员对其进行动作识别与状态分析,可显著提高救援的效率。因此,开展基于深度学习的实时无人机灾后救援人体姿态估计研究显得十分必要[3-4]。

目前,无人驾驶的多旋翼无人机配备了高清摄像头和高性能的电池,可满足长时间悬停并传输震后实时救援的画面[5]。在此基础上,通过无人机获取的震后救援现场的实时图像,采用深度学习检测和跟踪方法[6]对受灾后伤员的位置以及人体姿态进行检测,以供指挥中心进行快速部署救援并能够掌握震后的全局状况。通常情况下,其对人体骨骼的关键部件的具体检测精度有一定的要求,不仅要对整个人体进行精准检测,而且还要对人体的关键节点,例如头部、肩关节、肘关节、膝盖等部分进行更详细的检测和跟踪,从而掌握更详细的震后人员状态。




本文详细内容请下载:http://www.chinaaet.com/resource/share/2000004026






作者信息:

邬春学,贺欣欣

(上海理工大学 光电信息与计算机工程学院,上海200093)




微信图片_20210517164139.jpg

此内容为AET网站原创,未经授权禁止转载。