地铁运营岗位应急处置培训的语音识别研究
信息技术与网络安全 6期
周 杨,钱雪军
(同济大学 电子与信息工程学院,上海 201804)
摘要: 地铁交通运营是一种整体性活动,离不开各部门间的协调配合,地铁运营岗位应急处置培训系统应用于多个岗位的联合培训。该系统通过语音识别来实现模拟岗位间语音交互及对培训过程智能评价的功能。提出的语音识别方法可实现离线网络下对地铁培训专业术语的高识别精度,利用深度全序列卷积神经网络(DFCNN)和链接时序分类(CTC)构建声学模型,对应急处置培训用语进行整理并构建专业术语库,基于统计学构建语言模型。实验结果表明,该语音识别方法能够有效识别地铁应急处置培训用语,为地铁运营岗位人员的培训和考核提供更全面的评价指标。
中图分类号: U231.92;TP39
文献标识码: A
DOI: 10.19358/j.issn.2096-5133.2022.06.012
引用格式: 周杨,钱雪军. 地铁运营岗位应急处置培训的语音识别研究[J].信息技术与网络安全,2022,41(6):73-76,93.
文献标识码: A
DOI: 10.19358/j.issn.2096-5133.2022.06.012
引用格式: 周杨,钱雪军. 地铁运营岗位应急处置培训的语音识别研究[J].信息技术与网络安全,2022,41(6):73-76,93.
Speech recognition research on emergency disposal training for subway operation positions
Zhou Yang,Qian Xuejun
(School of Electronic and Information Engineering, Tongji University, Shanghai 201804, China)
Abstract: Metro transportation operation is a holistic activity, and it is inseparable from the coordination and cooperation between various departments. The subway operation post emergency response training system is used for joint training of multiple posts. The system needs voice recognition to simulate the function of voice interaction between posts and intelligent evaluation of the training process. The speech recognition method proposed in this paper realizes high recognition accuracy of subway training terminology under offline network. Using deep fully convolutional neural network (DFCNN) and connectionist temporal classification (CTC) technology to build acoustic models, collating and constructing professional terminology bases for emergency disposal training terms, and building language models based on statistics and terminology banks. Experimental results show that the speech recognition technology can effectively identify training terms and provide more comprehensive evaluation indicators for the training and assessment of personnel in operational positions.
Key words : metro emergency disposal training; speech recognition; convolutional neural networks
0 引言
地铁行车事故和突发事件严重影响了地铁的正常运营并威胁到了人民群众的生命财产安全[1]。对于相应的应急预案而言,应急预案演练的效果直接决定了应急响应的速度和应急处置实施的有效性,其中应急处置培训是应急预案演练的重点。
目前的联合培训系统需要所有培训岗位均为在岗状态,无法实现在联合培训中的单岗位培训功能。因此在对各个岗位进行应急处置培训过程中需要模拟各个岗位之间的语音交互,实现单个岗位独立培训时的智能互动,同时实现对培训过程的记录与智能评价。语音识别是语音交互的基础。目前,国内外语音识别技术已经趋于成熟,走向真正实用化[2],在日常对话等常见领域已达到实用要求,但是在地铁等专业应用领域的识别效果不佳[3]。
本文基于DFCNN-CTC框架提出新的语音识别声学模型结构,以实现对应急处置培训术语的高精度识别。实验表明,该语音识别模型可应用于应急处置培训系统中。
本文详细内容请下载:http://www.chinaaet.com/resource/share/2000004538
作者信息:
周 杨,钱雪军
(同济大学 电子与信息工程学院,上海 201804)
此内容为AET网站原创,未经授权禁止转载。