基于边缘计算的局部放电模式识别
2022年电子技术应用第9期
宋佳骏,刘守豹,熊中浩
大唐水电科学技术研究院有限公司,四川 成都610074
摘要: 局部放电是设备处于高电场强下,由于电场分布不均而导致的绝缘介质放电现象,设备产生局部放电对于绝缘层的危害很大,迅速检测识别设备的放电类型是工业正常运作的保障。针对电气设备局部放电类型识别问题,考虑到电气设备监测系统在诊断识别方面的时效性及精度,提出了基于边缘计算的局部放电模式识别方法,利用边缘计算架构的优势,基于云层训练、边缘推理思路,将复杂的识别算法训练优化过程部署在云层,将计算量大的识别算法卸载到边缘层,而计算量小的特征提取保留在终端设备层处理。通过构造局部放电相位分布谱图提取局部放电的统计特征参数,采用粒子群优化算法对广义回归神经网络模型进行优化,最后将统计特征参数作为神经网络的输入量,对放电类型进行识别。结果表明,所提模式识别方法识别准确率高,识别效率高。
中图分类号: TN91;TM85
文献标识码: A
DOI:10.16157/j.issn.0258-7998.222525
中文引用格式: 宋佳骏,刘守豹,熊中浩. 基于边缘计算的局部放电模式识别[J].电子技术应用,2022,48(9):55-58,62.
英文引用格式: Song Jiajun,Liu Shoubao,Xiong Zhonghao. Partial discharge pattern recognition based on edge computing[J]. Application of Electronic Technique,2022,48(9):55-58,62.
文献标识码: A
DOI:10.16157/j.issn.0258-7998.222525
中文引用格式: 宋佳骏,刘守豹,熊中浩. 基于边缘计算的局部放电模式识别[J].电子技术应用,2022,48(9):55-58,62.
英文引用格式: Song Jiajun,Liu Shoubao,Xiong Zhonghao. Partial discharge pattern recognition based on edge computing[J]. Application of Electronic Technique,2022,48(9):55-58,62.
Partial discharge pattern recognition based on edge computing
Song Jiajun,Liu Shoubao,Xiong Zhonghao
Datang Hydropower Science & Technology Research Institute Co.,Ltd.,Chengdu 610074,China
Abstract: Partial discharge is the phenomenon of dielectric discharge caused by uneven distribution of electric field under high electric field intensity. Partial discharge of equipment does great harm to the insulation layer. Rapid detection and identification of the discharge type of equipment is the guarantee of normal industrial operation. For electrical equipment for partial discharge type recognition problem, considering the electrical equipment monitoring system in the diagnosis of the timeliness and accuracy of recognition, this paper puts forward the partial discharge pattern recognition method based on edge calculation, using the advantage of edge computing architectures, edge of reasoning based on training, the clouds, the complex recognition algorithm training optimization deployment in the clouds. The recognition algorithm with large computation is offloaded to the edge layer, while the feature extraction with small computation is reserved to the terminal device layer. The statistical characteristic parameters of pd were extracted by constructing pd phase distribution spectrum, and the generalized regression neural network model was optimized by particle swarm optimization algorithm. Finally, the statistical characteristic parameters were used as the input of the neural network to identify the discharge types. The results show that the proposed pattern recognition method has high recognition accuracy and efficiency.
Key words : edge computing;partial discharge;pattern recognition;generalized regression neural network
0 引言
电厂中高压电气设备在长期运行的情况下不可避免会出现各种各样的劣化或者故障,对高压电气设备的实时监测和故障预警不仅能保证设备的稳定运行,也能极大程度上提高供电可靠性[1]。随着信息技术的发展,采用数字信号处理局部放电信号的技术愈发成熟,目前针对局部放电类型识别研究主要目的是提高缺陷识别精度,复杂的神经网络会占用大量计算资源,不符合工业运作的实际需求响应。在实际的监测系统中,必须考虑计算机软硬件资源环境的复杂程度以及识别算法的时延特性等问题[2-3]。
在万物互联的大背景下,传统云计算处理海量数据的能力显得尤为不足,存在实时性不够、带宽不足、能耗较大以及数据安全性低等问题[4-5]。边缘计算的出现使得上述问题得到有效的解决,针对局部放电数据采样频率高、数据处理复杂等特点,本文提出了一种基于边缘计算的局部放电模式识别方法,该方法将模式识别算法合理分配在边缘计算框架中,有效地降低了云端计算压力,在保证识别准确性的情况下提高了数据处理的实时性。
本文详细内容请下载:http://www.chinaaet.com/resource/share/2000004921。
作者信息:
宋佳骏,刘守豹,熊中浩
(大唐水电科学技术研究院有限公司,四川 成都610074)
此内容为AET网站原创,未经授权禁止转载。