基于5G架构超密集组网粒子群优化算法改进
2023年电子技术应用第1期
彭昇1,赵建保2,魏敏捷3
1.上海电力大学 电子信息工程学院,上海 201306;2.国网信息通信产业集团有限公司,北京 102200; 3.上海电力大学 电气工程学院,上海 201306
摘要: 随着移动通信技术的发展,传统智能终端设备无法满足快速增长的海量数据计算要求,移动边缘计算为物联网中移动用户提供了低延迟和灵活的计算方案。综合考虑边缘服务器上有限的计算资源以及网络中用户的动态需求,提出通过二进制粒子群优化算法分配发射功率优化传输能耗。将请求卸载与资源调度作为双重决策问题进行分析,基于粒子群优化算法提出了一种新的多目标优化算法求解该问题。仿真结果表明,二进制粒子群优化算法可以节省传输能耗,且具有良好的收敛性。所提出的新算法在响应率方面优于现有算法,在动态边缘计算网络中可以保持良好的性能。
中图分类号:TN929.5;TN301.6
文献标志码:A
DOI: 10.16157/j.issn.0258-7998.223278
中文引用格式: 彭昇,赵建保,魏敏捷. 基于5G架构超密集组网粒子群优化算法改进[J]. 电子技术应用,2023,49(1):69-74.
英文引用格式: Peng Sheng,Zhao Jianbao,Wei Minjie. Improvement of particle swarm algorithm based on ultra-dense networking under 5G architecture[J]. Application of Electronic Technique,2023,49(1):69-74.
文献标志码:A
DOI: 10.16157/j.issn.0258-7998.223278
中文引用格式: 彭昇,赵建保,魏敏捷. 基于5G架构超密集组网粒子群优化算法改进[J]. 电子技术应用,2023,49(1):69-74.
英文引用格式: Peng Sheng,Zhao Jianbao,Wei Minjie. Improvement of particle swarm algorithm based on ultra-dense networking under 5G architecture[J]. Application of Electronic Technique,2023,49(1):69-74.
Improvement of particle swarm algorithm based on ultra-dense networking under 5G architecture
Peng Sheng1,Zhao Jianbao2,Wei Minjie3
1.College of Electronic Information Engineering,Shanghai University of Electric Power, Shanghai 201306, China; 2.State Grid Information and Telecommunication Group Co., Ltd., Beijing 102200, China; 3.College of Electrical Engineering,Shanghai University of Electric Power, Shanghai 201306, China
Abstract: With the development of mobile communication technology, traditional intelligent terminal devices cannot meet the rapidly growing massive data computing requirements. Mobile edge computing provides low-latency and flexible computing solutions for mobile users in the Internet of Things. Considering the limited computing resources on the edge server and the dynamic needs of users in the network, this paper proposes to allocate the transmit power to optimize the transmission energy consumption through the binary particle swarm optimization algorithm. Analyzing request offloading and resource scheduling as a dual decision-making problem, a new multi-objective optimization algorithm based on particle swarm optimization algorithm is proposed to solve the problem. The simulation results show that the binary particle swarm optimization algorithm can save transmission energy and has good convergence. The proposed new algorithm outperforms existing algorithms in terms of response rate and can maintain good performance in dynamic edge computing networks.
Key words : edge computing;resource optimization;particle swarm optimization;task offloading
0 引言
随着移动通信技术的迅速发展,物联网中的终端设备(例如智能手机、智能家居、智能汽车等)都可以通过互联网来进行相互连接[1]。近年来,移动设备类型及数量呈指数增长,目前移动设备往往为了具备便携性与简易性,而缺乏足够的计算能力及容量来满足应用的服务质量要求。移动边缘计算(Mobile Edge Computing,MEC)是物联网边端设备执行计算请求的方法[2],移动网络运营商与云服务提供商在边端服务器中部署丰富的计算资源,在边端中对移动终端设备所产生的大量数据进行计算处理。
边缘计算资源调度的核心观点是通过优化移动边缘计算来提高计算资源与能力从而满足用户的需求。网络运营商开始普遍构建5G架构的超密集组网(Ultra-Dense Network,UDN)多基站协同服务场景[3]。在UDN中通过部署宏基站(Macro-cell Base Station,MBS)与多个微基站(Small-cell Base Station,SBS)实现极高的频率复用,极大提高了覆盖地区的系统容量与计算能力。
本文详细内容请下载:https://www.chinaaet.com/resource/share/2000005079。
作者信息:
彭昇1,赵建保2,魏敏捷3
(1.上海电力大学 电子信息工程学院,上海 201306;2.国网信息通信产业集团有限公司,北京 102200;
3.上海电力大学 电气工程学院,上海 201306)
此内容为AET网站原创,未经授权禁止转载。