基于卷积神经网络的图像分类模型综述*
电子技术应用 2023年9月
郭庆梅1,于恒力2,王中训1,刘宁波2
(1.烟台大学 物理与电子信息学院,山东 烟台 264005;2.海军航空大学 信息融合研究所,山东 烟台 264001)
摘要: 卷积神经网络在计算机视觉等领域占有一席之地,利用局部连接、权值共享以及池化操作等特性,有效地提取图像的局部特征,降低网络复杂度,具有更少的参数量和更好的鲁棒性,因此,吸引了众多研究者的关注,使分类模型朝着更轻、更快、更高效的方向迅速发展。按照卷积神经网络发展的时间线,介绍了常用的典型网络模型,剖析了其创新点与优缺点,并对其未来的发展方向进行了展望。
中图分类号:TP183 文献标志码:A DOI: 10.16157/j.issn.0258-7998.233909
中文引用格式: 郭庆梅,于恒力,王中训,等. 基于卷积神经网络的图像分类模型综述[J]. 电子技术应用,2023,49(9):31-38.
英文引用格式: Guo Qingmei,Yu Hengli,Wang Zhongxun,et al. Review of image classification models based on convolutional neural networks[J]. Application of Electronic Technique,2023,49(9):31-38.
中文引用格式: 郭庆梅,于恒力,王中训,等. 基于卷积神经网络的图像分类模型综述[J]. 电子技术应用,2023,49(9):31-38.
英文引用格式: Guo Qingmei,Yu Hengli,Wang Zhongxun,et al. Review of image classification models based on convolutional neural networks[J]. Application of Electronic Technique,2023,49(9):31-38.
Review of image classification models based on convolutional neural networks
Guo Qingmei1,Yu Hengli2,Wang Zhongxun1,Liu Ningbo2
(1.School of Physics and Electronic Information, Yantai University, Yantai 264005, China; 2.Information Fusion Institute, Naval Aviation University, Yantai 264001, China)
Abstract: Convolutional neural networks have established themselves as a prominent technique in computer vision and related fields. By leveraging features such as local connections, weight sharing, and pooling operations, these networks are able to effectively extract local features from images, reducing network complexity, and exhibiting fewer parameters and greater robustness. As a result, they have garnered significant attention from researchers and have led to the rapid development of classification models that are lighter, faster, and more efficient. This article presents a timeline of typical network models used in convolutional neural network development, analyzes their innovative points and advantages and disadvantages, and offers insights into their future development directions.
Key words : convolutional neural network;computer vision;feature extraction;classification model
0 引言
卷积神经网络[1]是一种深度学习模型,主要应用于图像和视频等数据的识别与分类。2012年Alex Krizhevsky等人[2]在ImageNet大赛中使用CNN大幅度超越传统方法,CNN一跃成为计算机视觉领域的热门技术。其具有表征学习能力、泛化能力以及平移不变性,可以高效处理大规模图像且能够转换成图像结构的数据,解决了传统方法需手动提取特征带来的耗时、准确率低等问题,加之计算机性能有了很大的提升[3],使得CNN得到了质的发展,因此在图像分类、目标识别以及医疗诊断等领域被广泛应用[4],且取得了显著的成就。
本文详细内容请下载:https://www.chinaaet.com/resource/share/2000005634
作者信息:
郭庆梅1,于恒力2,王中训1,刘宁波2
(1.烟台大学 物理与电子信息学院,山东 烟台 264005;2.海军航空大学 信息融合研究所,山东 烟台 264001)
此内容为AET网站原创,未经授权禁止转载。