《电子技术应用》
您所在的位置:首页 > 测试测量 > 设计应用 > 基于主轴电机电流信号的表面粗糙度检测
基于主轴电机电流信号的表面粗糙度检测
电子技术应用
刘雪杰,李国富,任潞
宁波大学 机械工程与力学学院,浙江 宁波 315211
摘要: 针对表面粗糙度不能及时检测造成的工件浪费问题,首次提出根据主轴电机电流信号进行表面粗糙度检测分类。通过实验采集不同表面粗糙度加工时的主轴电机电流信号,采用小波包分解将电流信号分解成不同频段,借助能量特征和裕度因子对不同频段电流信号进行评估,过滤低相关性频段,再通过随机森林筛选特征,降低特征的冗余性。总谐波失真特征实现了积屑瘤检测,仅依赖构建的电流信号特征工程表面粗糙度检测准确率高达95%以上,并且检测时间在2 s以内,基本实现了工件表面粗糙度的快速准确检测。
中图分类号:TP181 文献标志码:A DOI: 10.16157/j.issn.0258-7998.234208
中文引用格式: 刘雪杰,李国富,任潞. 基于主轴电机电流信号的表面粗糙度检测[J]. 电子技术应用,2024,50(2):54-59.
英文引用格式: Liu Xuejie,Li Guofu,Ren Lu. Surface roughness detection based on spindle motor current signal[J]. Application of Electronic Technique,2024,50(2):54-59.
Surface roughness detection based on spindle motor current signal
Liu Xuejie,Li Guofu,Ren Lu
College of Mechanical Engineering and Mechanics,Ningbo University,Ningbo 315211, China
Abstract: Workpiece waste is usually caused by delayed detection of surface roughness. A rapid surface roughness detection classification based on the current signal of the spindle motor is proposed for the first time. The current signals of the spindle motor under different surface roughness processing conditions are collected through experiments, and the current signals are decomposed into different frequency bands through wavelet packet decomposition. The current signals of different frequency bands are evaluated by the energy characteristics and the margin factors, and the low correlation frequency bands are filtered. Then the features are screened through random forest to reduce the redundancy of features. The total harmonic distortion feature achieves built-up edge detection during the machining process. The workpiece surface roughness detection accuracy is as high as 95%. And the detection time is within 2 seconds. Spindle current signal analysis basically achieves fast and accurate detection of workpiece surface roughness.
Key words : spindle motor current signal;wavelet packet decomposition;random forest;the total harmonic distortion;surface roughness

引言

表面粗糙度作为工件质量的重要评价指标,直接影响工件的耐磨性、抗腐蚀性、密封性、配合程度、传动精度[1],因此在工件工艺设计时都会优先考虑表面粗糙度。表面粗糙度的及时检测是十分必要的,当工件表面粗糙度不满足设计要求时需要及时调整工艺参数避免更大的损失。表面粗糙度的检测有多种方法,大致分为两类,第一类是采用接触式探针进行表面粗糙度检测;第二类是通过传感器采集图像、电流信号、振动信号或声发射信号进行分析处理,间接得到表面粗糙度值。接触式检测准确度很高,但是需要等待加工完成后才能进行检测,影响加工效率[2]。图像检测容易受到切削液和切屑的影响,另外图像检测需要高性能的工业摄像机,导致图像检测表面粗糙度价格昂贵。振动信号通常安装在刀具上,可能会干扰机床的加工,声发射信号容易受到其他机床的干扰[3],而电机电流信号是机床材料去除的动力来源,与加工过程十分密切,外界不易对机床电机电流信号造成干扰[4],并且主轴电流信号获取十分方便,距离较远也能轻松获取电流信号。使用电机电流信号进行表面粗糙度的检测研究比较少,主要原因是电流信号与表面粗糙度存在较为复杂的对应关系。


本文详细内容请下载:

https://www.chinaaet.com/resource/share/2000005855


作者信息:

刘雪杰,李国富,任潞

宁波大学 机械工程与力学学院,浙江 宁波 315211


weidian.jpg

此内容为AET网站原创,未经授权禁止转载。