海洋环境下基于增强YOLOv7的垃圾目标检测
电子技术应用
廖辰津
福建理工大学
摘要: 针对海洋垃圾识别任务在实际应用中模型准确率不高的问题,提出一种基于优化YOLOv7的海洋垃圾识别算法。在图像增强部分,基于概率UIE的框架,通过添加eSE注意力减少特征信息的丢失。在损失函数部分,在IoU损失函数的基础上引入两层注意力机制的损失函数,将其与EIoU损失函数融合进一步提升模型的泛化能力。将该算法应用于海洋垃圾检测任务,并在基础数据集上对其进行评估。在YOLOTrashCan两个数据集上的平均精度均值指标分别达到69.5%、63.5%,相较于YOLOv7算法分别提升6%、1.6%。整体实验结果表明,所构建的算法能有效提升海洋垃圾检测的准确性。
中图分类号:TP391.41 文献标志码:A DOI: 10.16157/j.issn.0258-7998.244869
中文引用格式: 廖辰津. 海洋环境下基于增强YOLOv7的垃圾目标检测[J]. 电子技术应用,2024,50(6):66-70.
英文引用格式: Liao Chenjin. Garbage object detection based on enhanced YOLOv7 in marine environment[J]. Application of Electronic Technique,2024,50(6):66-70.
中文引用格式: 廖辰津. 海洋环境下基于增强YOLOv7的垃圾目标检测[J]. 电子技术应用,2024,50(6):66-70.
英文引用格式: Liao Chenjin. Garbage object detection based on enhanced YOLOv7 in marine environment[J]. Application of Electronic Technique,2024,50(6):66-70.
Garbage object detection based on enhanced YOLOv7 in marine environment
Liao Chenjin
Fujian University of Technology
Abstract: To address the issue of low model accuracy in practical applications of marine debris identification, this paper proposes an improved garbage classification algorithm based on optimized YOLOv7. In the image enhancement part, a probabilistic UIE framework is introduced to reduce the loss of feature information by incorporating eSE attention. In the loss function part, a two-layer attention mechanism is added to the IoU loss function to enhance the model’s generalization ability when combined with the EIoU loss function. The proposed algorithm is applied to marine debris detection tasks and evaluated on benchmark datasets. The average precision on the YOLOTrashCan datasets achieves 69.5% and 63.5%, respectively, representing a 6% and 1.6% improvement compared to the YOLOv7 algorithm. Overall experimental results demonstrate that the algorithm constructed in this paper effectively enhances the accuracy of marine debris detection.
Key words : EUIE;eSE attention;marine debris detection
引言
海洋是地球上最大的生态系统,其重要性不可低估。随着人类社会对海洋的探索,人类制造越来越多的垃圾通过各种途径进入海洋并滞留在海洋中。尤其是海洋织物垃圾,这种海洋垃圾具有持久性与不可分解性。因此,清理海洋垃圾刻不容缓。
近年来,YOLO系列深度学习算法在实际工程中获得了广泛应用。鉴于海洋目标检测在实际应用中的需求,本文以YOLOv7[1]为基础框架。
本文详细内容请下载:
https://www.chinaaet.com/resource/share/2000006033
作者信息:
廖辰津
(福建理工大学,福建 福州 350118)
此内容为AET网站原创,未经授权禁止转载。