《电子技术应用》
您所在的位置:首页 > 其他 > 设计应用 > 基于深度学习的杆塔三维姿态实时估计
基于深度学习的杆塔三维姿态实时估计
2021年电子技术应用第6期
李国强1,彭炽刚1,汪 勇1,向东伟2,杨成城2
1.广东电网有限责任公司 机巡作业中心,广东 广州510062;2.武汉汇卓航科技有限公司,湖北 武汉430070
摘要: 针对目前无人机航拍影像杆塔识别算法中,普遍是无人机通过倾斜摄影技术获取到杆塔的原始遥观影像数据,经过机器学习训练,识别其余图片数据中的杆塔。其中存在获取机器训练所需的图片数据来源缓慢、只能二维识别图片中杆塔等问题。提出了基于深度学习的杆塔三维姿态实时估计的算法。首先,通过三维平台合成影像数据;其次,通过Deep-Object-Pose训练及其处理;然后测试真实的图片数据或者实时视频,达到智能识别杆塔的三维空间姿态信息。该算法为无人机自动寻找杆塔目标和智能精细化巡检提供新的思路。
中图分类号: TN014;TP183
文献标识码: A
DOI:10.16157/j.issn.0258-7998.200280
中文引用格式: 李国强,彭炽刚,汪勇,等. 基于深度学习的杆塔三维姿态实时估计[J].电子技术应用,2021,47(6):87-91,95.
英文引用格式: Li Guoqiang,Peng Chigang,Wang Yong,et al. Real-time estimation of three-dimensional attitude of towers based on deep learning[J]. Application of Electronic Technique,2021,47(6):87-91,95.
Real-time estimation of three-dimensional attitude of towers based on deep learning
Li Guoqiang1,Peng Chigang1,Wang Yong1,Xiang Dongwei2,Yang Chengcheng2
1.Machine Operation Center,Guangdong Power Grid Co.,Ltd.,Guangzhou 510062,China; 2.Wuhan Huizhuohang Technology Co.,Ltd.,Wuhan 430070,China
Abstract: According to the current aerial image tower identification algorithm of UAV, it is common for UAV to obtain the original remote viewing image data of the tower through tilt photography technology, and identify the tower in the rest image data through machine learning training.Among them, there are some problems such as slow source of image data needed for machine training and two-dimensional identification of the tower in the picture.In this paper, an algorithm based on deep-object-pose is proposed for real-time aerial aerial aerial aerial recognition of the three-dimensional attitude of the tower.Firstly, image data is synthesized by three-dimensional platform.Secondly, deep-object-pose training and treatment were carried out.Then test the real picture data or real-time video, to achieve intelligent recognition of the tower's three-dimensional attitude information.The experimental results show that this algorithm will provide a new idea for uav to automatically find the target of tower and intelligent fine inspection.
Key words : Deep-Object-Pose;3D attitude recognition of tower;UAV;aerial image

0 引言

    随着国民经济的增长和无人机在电网的逐步应用推广,繁重的无人机作业任务让无人机的智能化显得尤为重要。同时,机器学习技术的飞速发展,给无人机的智能化提供了新的思路。但是,机器视觉的目前所需要的训练数据是通过无人机等手段采集的,不仅耗时长、耗人力,而且检测往往只是针对单张图片,进行二维平面上的识别,面对实时视频检测比较卡顿,同样无法识别物体三维空间姿态。

    因此,需要改善视频实时识别的卡顿,改进训练数据的采集技术。传统的目标检测算法大多数以图像识别为基础。一般可以在图片上使用穷举法或者滑动窗口选出所有物体可能出现的区域框,对这些区域框提取特征并使用图像识别分类方法,得到所有分类成功的区域后,通过非极大值抑制输出结果。近些年来相关学者提出采用人工智能的方法实现目标检测,其中包括K最近邻KNN[1]、随机森林Random Forest[2]、线性向量机SVM[3]。这些浅层机器学习方法在建模过程中功能简单,复杂函数和分类问题的表达有限,鲁棒性差,准确度和精度低。而对于难以应对指数增长的遥感图像目标特征提取,也不能达到很好的特征分析和识别效果。




本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003580




作者信息:

李国强1,彭炽刚1,汪  勇1,向东伟2,杨成城2

(1.广东电网有限责任公司 机巡作业中心,广东 广州510062;2.武汉汇卓航科技有限公司,湖北 武汉430070)





wd.jpg

此内容为AET网站原创,未经授权禁止转载。