《电子技术应用》
您所在的位置:首页 > 模拟设计 > 设计应用 > 基于深度自编码器的智能电网窃电网络攻击异常检测
基于深度自编码器的智能电网窃电网络攻击异常检测
电子技术应用
黄燕1,李金灿1,杨霞琴2,李佩2,李梓3
1.广西电网有限责任公司,广西 南宁 530023;2.广西电网有限责任公司南宁供电局,广西 南宁 530000; 3.广西电网有限责任公司梧州供电局,广西 梧州 543002
摘要: 现有AMIs中的异常检测器存在浅层架构,难以捕获时间相关性以及电力消耗数据中存在的复杂模式,从而影响检测性能。提出基于长短期记忆(LSTM)的序列对序列(seq2seq)结构的深度(堆栈)自编码器。自动编码器结构的深度有助于捕获数据的复杂模式,seq2seq LSTM模型可以利用数据的时间序列特性。研究了简单自编码器、变分自编码器和注意自编码器(AEA)的性能,得出在这3种自编码器采用seq2seq结构时检测性能优于全连接结构。仿真结果表明,带有注意力机制的检测器(AEA)检出率和虚警率分别比现有性能最好的检测器高4%~21%和4%~13%。
中图分类号:TM28 文献标志码:A DOI: 10.16157/j.issn.0258-7998.234395
中文引用格式: 黄燕,李金灿,杨霞琴,等. 基于深度自编码器的智能电网窃电网络攻击异常检测[J]. 电子技术应用,2024,50(2):76-82.
英文引用格式: Huang Yan,Li Jincan,Yang Xiaqin,et al. Anomaly detection of smart grid stealing network attacks based on deep autoencoder[J]. Application of Electronic Technique,2024,50(2):76-82.
Anomaly detection of smart grid stealing network attacks based on deep autoencoder
Huang Yan1,Li Jincan1,Yang Xiaqin2,Li Pei2,Li Zi3
1.State Grid Guangxi Power Supply Company,Nanning 530023, China;2.State Grid Nanning Power Supply Company,Nanning 530000, China;3.State Grid Wuzhou Power Supply Company,Wuzhou 543002, China
Abstract: Existing anomaly detectors in AMIs suffer from shallow architectures, which impede their ability to capture temporal correlations and complex patterns in electricity consumption data, thus impact detection performance adversely. A deep (stacked) autoencoder structure based on Long Short-Term Memory (LSTM) with a sequence-to-sequence (seq2seq) configuration is proposed. The depth of the autoencoder architecture is beneficial for capturing complex data patterns, and the seq2seq LSTM model effectively utilizes the temporal sequential characteristics of the data. The performance of simple autoencoders, variational autoencoders, and Attention Enhanced Autoencoders (AEA) was studied, revealing that using the seq2seq structure in these three types of autoencoders results in superior detection performance compared to fully connected architectures. Simulation results demonstrate that the detector with an attention mechanism (AEA) achieves a 4%~21% higher detection rate and a 4%~13% lower false alarm rate compared to the best-performing existing detectors.
Key words : autoencoder;deep machine learning;power stealing;hyperparameter optimization;sequence-to-sequence

引言

电力盗窃不仅会使电网过载,还会对电网的稳定性和效率产生负面影响。因此提出了使用机器学习模型来识别电力盗窃[1-2]。基于机器学习的检测器包括监督分类器和异常检测器。监督分类器包括浅层机器学习分类器,如朴素贝叶斯[3]和支持向量机(SVM)[4],还有基于决策树和SVM的两步检测器[5]。虽然上述分类器检测准确率高,但过于依赖于客户耗电数据的良性和恶意样本的可用性,只能检测到已经训练过的攻击类型。


本文详细内容请下载:

https://www.chinaaet.com/resource/share/2000005859


作者信息:

黄燕1,李金灿1,杨霞琴2,李佩2,李梓3

1.广西电网有限责任公司,广西 南宁 530023;2.广西电网有限责任公司南宁供电局,广西 南宁 530000; 3.广西电网有限责任公司梧州供电局,广西 梧州 543002


weidian.jpg

此内容为AET网站原创,未经授权禁止转载。